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Executive summary

Background

Major atmospheric-driven catastrophes, such as 
hurricanes and floods, may appear to be independent 
events when looked at historically. Yet it is well 
established in climate science that regional weather 
and climate conditions in one part of the world can 
have impacts on other parts. Changes in temperature or 
humidity that result in increased rainfall in one ocean 
basin might also create conditions favourable for storm 
development that affect communities thousands of 
kilometres away. 

In weather and climate science, links between extreme 
weather events occurring in separate regions of the 
world, taking place over timescales from days to years, 
are known as teleconnections.1 

The best known teleconnection, the El Niño Southern 
Oscillation phenomenon, drives changes in weather 
patterns globally by affecting large-scale atmospheric 
circulation across the tropics. These changes modify 
rainfall patterns and can cause flooding, droughts 
and heatwaves.2 El Niño years typically have more 
active Pacific typhoon seasons while La Niña years, 
the opposite phase, represented by colder than normal 
sea surface temperatures, typically have more active 
Atlantic hurricane seasons. Given the interconnected 
nature of the “Earth system” – the Earth´s interacting 
physical, chemical, and biological processes – it is 
therefore possible for weather events or perils in 
different regions (known as region-perils) to be 
connected to the same driver.

Implications of weather connections for insurers

But just how interconnected are these climate drivers? 
The answer to this question is important for insurers, 
and particularly reinsurers, both of whom are required 
by regulators to hold a level of capital that adequately 
reflects their exposure to losses from significant weather 
events. It is the insurer’s responsibility to demonstrate 
to the regulator that they hold adequate levels of 
capital. For example, the Corporation of Lloyd’s uses an 
internal model to calculate the capital required by the 
market, this model covers many perils, such as hurricane 
risk, windstorms, winter storms, hail and flooding, in 
multiple regions around the world to show that its 
capital is adequate. 

The Corporation of Lloyd’s internal model is based 
predominantly on the assumption that extreme weather 
events occur independently of each other. Recently, 
however, some in the regulatory community have 
started to question whether extreme weather events 
are more interconnected than previously thought and 
whether the assumption of independence is appropriate. 

If it is not, regulators could require insurers and 
reinsurers to hold more capital to cover their exposure 
to potentially greater insurance losses. This requirement 
would tie up funds that could otherwise be allocated to 
new business development, such as developing products 
for new threats e.g. cyber risks.

To establish whether the assumption of independence 
in insurers’ internal models is appropriate, and to 
increase insurers’ and regulators’ understanding of the 
implications of teleconnections for risk modelling, 
Lloyd’s commissioned the Met Office to investigate 
the extent of the links between different global 
extreme weather perils and the mechanisms for these 
dependencies. 

This report answers the question: is it reasonable to 
assume independence between significant weather risks 
in certain region-perils around the world? 

Groundbreaking methodology

Lloyd’s worked with the Met Office to develop 
an innovative methodology for assessing the 
interconnectivity of global weather events. The 
comprehensive approach detailed in this study is 
believed to be unique because it analyses the potential 
links between weather events globally, whereas existing 
methodologies cover single regions only. 

And in a groundbreaking move, Lloyd’s and the Met 
Office have disclosed the methodology in full for 
general review purposes and to encourage debate (see 
Appendix A for full details of the methodology). Both 
Lloyd’s and the Met Office hope that by adopting this 
approach other modellers can add to and improve the 
methodology.

To create the methodology, 16 region-perils were chosen 
on the basis of their relevance to the Lloyd’s market. The 
Met Office then identified 22 potential “Earth system 
drivers” (such as El Niño) that could be connected 
to these region-perils. The Met Office selected nine 
of these based on characteristics of influence and 
seasonality that related most closely to answering the 
question of independence posed by Lloyd’s.

The next stage involved analysing the various 
interactions between perils and climate drivers, which 
showed the extent of the potential connections between 
weather events. The degree of correlation between the 
climate drivers and the chosen region-perils was then 
assessed following a comprehensive review of existing 
research literature from more than 200 sources (see 
Appendix C). Last, a model was run to produce 16 
region-peril indices which captured the background 
level of risk for each peril. 

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Appendix%20C
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From this data the Corporation of Lloyd’s was able 
to assess whether the assumption of independence 
between weather events is appropriate.

Additional research 

To complement the main approach in this paper Lloyd’s 
also worked with Ed Wheatcroft, an independent 
statistics consultant based at the Centre for Analysis of 
Time Series, London School of Economics 

His data-driven statistical study (see Section 3.1, Box 2, 
p30) considered the assumption of independence from 
a number of different angles, including whether it is 
reasonable to assume so between perils of the same type, 
whether there are links between different types of perils 
and whether there is evidence to reject the assumption 
of independence when considering significant weather 
events that take place simultaneously. The study looked 
at whether there was any significance in the number 
of times each type of peril took place annually using 
available data sources.

This conclusion of this second study is consistent with 
the findings set out below.

The key findings 

1  For extreme weather events an assumption of 
independence is appropriate. 
The results of running the methodology in this report 
through the Corporation of Lloyd’s internal model 
demonstrate that the assumption of independence 
between weather events in models used by the 
insurance industry remains appropriate. 

2  A number of regions show some correlation 
between climate drivers but these are not 
considered to be substantial enough to warrant a 
change in our capital. 
While there is some level of dependency between 
perils, the findings of both the data-driven statistical 
study (see Section 3.1, Box 2, p30) and the model 
presented in the main body of this study are that 
the impact of this on insurance capital modelling is 
negligible. Only nine of the 120 peril correlations 
analysed in this study showed any significant links, 
and the links can be both positive and negative. 
For example, the study confirmed that while the El 
Niño-Southern Oscillation influences the majority 
(14 of 16) of regional weather perils, it also reduces 
the impact of 10 of the 14 perils for three months of 
the year.

3  Even when there are high correlation levels 
between weather events, it does not necessarily 
follow that there will be large insurance losses.  
For atmospheric hazards to cause major insurance 
losses, a rare major atmospheric event has to take 
place in combination with other circumstances 
conducive to such losses (e.g. a weather event 
affecting a major urban centre). Such circumstances 
are so rare that even when atmospheric conditions 
are conducive to a major weather event, they do not 
always occur. Conversely, large losses sometimes 
occur in years when the correlation levels are not 
as high. For example, Hurricane Andrew (see case 
study, p6 and p33), which caused one of the largest 
insurance losses of the 20th century, occurred in an 
El Niño year – a climatic feature that tends to reduce 
the likelihood of hurricane development. 

4  Weather events can still occur simultaneously even 
if there is no link between them.  
Extreme weather events can still take place at the 
same time even though this study confirms that 
weather events can be modelled as independent. 
Indeed, the Corporation of Lloyd’s internal model 
generates scenarios that show multiple massive 
catastrophes occurring in the same year, despite 
underlying assumptions of independence. 

Overall conclusion

The results of the modelling presented in this study 
demonstrate that an assumption of region-peril 
independence is currently appropriate for use in 
modelling extreme natural catastrophe risks. 

This important finding supports the broader argument 
that the global reinsurance industry’s practice of pooling 
risks in multiple regions is capital efficient and that 
modelling appropriate region perils as independent is 
reasonable. 

This challenges the increasingly held view among 
some regulators around the world that capital for local 
risks should be held in their own jurisdictions. Lloyd’s 
believes this approach reduces the capital efficiency of 
the (re)insurance market by ignoring the diversification 
benefits provided by writing different risks in different 
locations and, in so doing, needlessly increases costs, to 
the ultimate detriment of policyholders. Insisting on the 
fragmentation of capital is not in the best interests of 
policyholders.
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Next steps

Modellers can use external data creatively and 
innovatively to complement the insurance market’s 
specialist data, and both Lloyd’s and the Met Office 
have disclosed the methodology in full for general 
review purposes to encourage debate (see Appendix A for 
full details of the methodology). Lloyd’s welcomes dialogue 
and development from any and all sectors to add to and 
improve the methodology.

Whilst future studies could use numerical weather 
predication models to further assess these implications 
(see p36 for more details), Lloyd’s believes that additional 
modelling efforts would be best directed to further 
studies. These could focus on topics such as augmenting 
the list of historical events with simulated examples to 
ensure that insurers are prepared for the full range of 
potential risks. 

Note on the methodology 

While this report finds that an assumption of 
independence is appropriate when modelling weather-
related insurance losses, it is important to recognise 
the limitations of the methodology presented, which is 
based on the current state of climate dynamics and does 
not account for possible future change in the Earth’s 
climate system. It is also based on assumptions that any 
interaction between weather events is captured by the 
methodology’s driver simulations. 

Case study – Hurricane Andrew

This case study highlights the potential for extreme 
events to occur even though climate conditions are 
unfavourable for their development. 

Hurricane Andrew is a good illustration of this. 
Andrew made landfall as a Category 5 hurricane 
in August 1992 in Miami, Florida. Described by 
the Miami Herald at the time as “the worst natural 
disaster ever to befall the United States”, it destroyed 
63,000 homes, left up to 250,000 people homeless 
and, according to the National Hurricane Center, led 
directly to 26 deaths and contributed to 39 more.3

And yet the 1992 hurricane season as a whole was 
not very active, in line with the characteristics of the 

El Niño phase. One measure of hurricane season 
strength is known as the Accumulated Cyclone 
Energy (ACE) Index. In 1992, the ACE Index was 
below normal at 76, compared to 250 in 2005, the 
highest ever recorded.4 In other words, climatic 
conditions were not conducive to a hurricane but 
Andrew took place anyway.

In terms of its impact on the insurance industry, 
despite being a relatively small storm, Andrew’s 
landfall on 24 August caused US$25 billion-worth 
of economic damage, $15 billion of which was 
insured5 ($27 billion in today’s terms6). 
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1 Introduction

This study considers climate drivers – those local 
or regional modes of the atmosphere-ocean system 
that have a significant impact on large-scale weather 
patterns – and teleconnections – the remote influences 
that these drivers have on weather patterns. Many 
studies in academic literature focus on the connection 
between a specific climate driver and a chosen peril 
in a particular region, such as the wetter-than-average 
rainfall tendency during August-November over the 
Iberian Peninsula due to El Niño. Studies of the likely 
interactions between climate drivers and perils on a 
global scale are more limited in number.

This interaction between climate drivers and perils 
on a global scale is important to explore because any 
material levels of dependency between the major 
atmospheric risks covered by insurance could require 
an increase in the level of statutory capital held by the 
insurance industry.

An in-depth review of available literature relating to 
the nine key climate drivers and 16 region-perils that 
were determined to be of interest, was used alongside 
statistical analysis to explore the question. The result 
is a matrix of correlations along with a global map to 
illustrate connections (see Section 3, p24).

The Met Office approach to address the peril 
interdependency was to consider which key drivers 
of the global climate (such as El Niño-Southern 
Oscillation) are important for a specified list of perils, 
representing key areas of insurance exposure for the 
Lloyd’s market. 

The Met Office developed a model that takes simulated 
driver information and uses these to produce a “peril 
index” for each peril. Positive values of the index 
indicate a higher tendency of occurrence for that 
peril in the year and negative values indicate a lower 
tendency of occurrence. The final step in the modelling 
process was to link the peril indices to modelled 
extreme events and insurance losses. The model 
demonstrates that multiple drivers can often affect a 
single region-peril and that the dependency between 
the region-perils typically arises from shared drivers. 
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2 Methodology

Figure 1 (see p9) illustrates the processes followed 
in this project; the layout of the following sections 
matches these steps. 

In summary, the approach taken in this study is as 
follows:

Climate drivers and teleconnections: In this study 
Lloyd’s considers climate drivers – those local or regional 
modes of the atmosphere-ocean system that have a 
significant impact on large-scale weather patterns – and 
teleconnections – the remote influences that these drivers 
have on weather patterns. Many studies in literature 
focus on the connection between a specific climate driver 
and a chosen peril in a particular region, such as the 
wetter than average rainfall tendency during August-
November over the Iberian Peninsula due to El Niño, 
but work looking more widely at the likely interactions 
between climate drivers and perils on a global scale 
is more limited. This is a very complex picture and 
something that is addressed in this study with reference 
to currently available literature and statistical analysis.

Selection of region-perils and drivers: 
First key region perils were specified (Section 2.1), 
then potential drivers were identified that might 
influence these region perils (Section 2.2). Relevant 
climate drivers were associated with an initial list of 
perils and regions proposed by Lloyd’s. This selection 
was reduced to a list of nine key climate drivers (see 
Section 2.3) that were assessed as being mechanistically 
sufficiently distinct, demonstrating a suitably robust 
relationship with region-perils and occurring on a 
timescale commensurate with the annual decision-
making cycle of the reinsurance industry. These drivers 
were also sufficiently well covered in the literature to 
allow analysis of dependency to be made with some 
level of confidence. To represent lagged and non-lagged 
interactions of seasonal climate drivers, the auto-
correlation of each driver and the cross-correlation 
between driver pairs was modelled.

Correlation of drivers and region-perils using 
literature: From a review of articles in the academic 
literature relating to the nine key climate drivers and 16 
region-perils, an assessment was made of the correlation 
coefficient for each peril-driver interaction. (see Appendix 
section C for a selected bibliography of material reviewed). 
The approach sought to maximise the use and value of 
the available information: where multiple correlation 
values were available, these were appropriately averaged; 
where evidence is provided but no correlation value 
given then an estimate is made; where a strong 
relationship has been identified based on compelling 
evidence or supported by multiple sources of evidence 
this has been highlighted. This analysis was then further 
subjected to peer review by subject matter experts to 
ensure that the analysis could plausibly be defended.

Statistical modelling of peril-driver interactions: 
The interconnected nature of the Earth’s climate system 
meant that it was necessary, at the next stage, to model 
not only the interactions of two perils with one climate 
driver, but also the interactions of a set of perils with 
two or more drivers, to represent the case where drivers 
have an modulating effect on each other as well as on 
the region-peril under analysis. The result is a matrix of 
correlations (illustrated in Section 3, p24) for the full set 
of perils identified at the outset of the study.

Monthly index data for the nine drivers, taken from 
between 1979 and 2015, then formed the basis of a 
coupled statistical model capturing the dependency 
structure between the drivers, described in Section 
2.4 (and in full in Appendix section A2). This enabled a 
further statistical modelling of the region-peril index 
behaviour as a function of the drivers to be developed, 
as described in Section 2.5. Peril indices describe the 
level of background risk in a given year for a certain 
region-perils – a high peril index does not necessarily 
lead to an extreme event in that year since these are 
random and depend on multiple features. The process 
for modelling extreme events given a certain peril index 
is then described in Section 3.1.

Key peril-peril correlations and limiting factors: 
Only nine of 120 peril-peril correlations are significantly 
different to zero at 90% confidence (meaning that the 
correlations are unlikely to have occurred by chance, 
not that they are of particular importance), based on 
currently available evidence (which does not mean that 
the others do not exist and may not be found to be more 
significant in future, either through further research or 
as a result of the impacts of climate change). El Niño-
Southern Oscillation is confirmed as the global driver 
that influences the majority (14 of 16) of regional perils 
investigated in this study. For 10 of the 14 perils it is 
a significant source of peril modulation for more than 
three months of a year.

Conditional event sampling: The model presented 
here creates an index for each chosen region-peril. 
A high level of the index indicates an increased 
background risk for the peril. This does not imply 
that an extreme financial event will arise – it simply 
makes it more likely. The most extreme financial events 
typically require a whole chain of unlikely things 
to occur. Some of these are captured by the index 
(such as a hurricane forming and being stronger than 
average) but others (such as the fact the hurricane is a 
high category that makes landfall hitting a particular 
city at high tide) are not captured by the index. This 
residual randomness is captured within the model by 
further Monte Carlo sampling from a loss distribution 
that has been adjusted by the index. Lloyd’s calls this 
conditional event sampling. Even without this step the 
study found that the low levels of correlation in the 

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Appendix%20C
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Figure 1: Project process flow chart

Source: Lloyd’s.
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region-peril indices do not materially challenge Lloyd’s 
assumption of independence. 

Limitations: In some instances evidence of a 
correlation is contradictory, limiting the strength of 
any conclusions on the relationship. Not all studies 
compare the same regions (a sub region of a country 
for example) and not all studies investigate correlations 
with the same meteorological attributes (e.g. flooding 
vs rainfall rate), leading to further uncertainties in the 
evidence. It is important to note that some oscillation 
between positive and negative phases of some drivers 
are thought to be non-stationary over long time periods, 
which is something that is not accounted for in this 
work. Similarly, the effect of large scale global climatic 
change is not incorporated. Lloyd’s also assumes that 
any driver-driver interaction in either the form of 
driver-to-driver enhancement or diminishment is 
captured by the study’s tiered driver simulations. In 
areas where the evidence is contradictory or limited, 
targeted further research would enable more robust 
evidence to be generated and may alter some of the 
conclusions of this study.

Methodology summary

First key region perils were specified (Section 2.1), then 
potential drivers were identified that might influence 
these region perils (section 2.2). These were rationalised 
to nine key drivers based on criteria described in 
Section 2.3. From a review of articles in the academic 
literature relating to the nine key climate drivers and 16 
region-perils, an assessment was made of the correlation 
coefficient for each peril-driver interaction (see Appendix 
section C for a selected bibliography of material reviewed). 

The approach sought to maximise the use and value of 
the available information: where multiple correlation 
values were available, these were appropriately averaged; 
where evidence is provided but no correlation value 
given then an estimate is made; where a strong 
relationship has been identified based on compelling 
evidence or supported by multiple sources of evidence 
this has been highlighted. This analysis was then further 
subjected to peer-review by subject matter experts to 
ensure that the analysis could plausibly be defended.

Monthly index data for the nine drivers, taken from 
between 1979 and 2015, then formed the basis of a 
coupled statistical model capturing the dependency 
structure between the drivers, described in Section 
2.4 (and in full in Appendix section A2). This enabled a 
further statistical modelling of the region-peril index 
behaviour as a function of the drivers to be developed, 
as described in Section 2.5. Peril indices describe the 
level of background risk in a given year for a certain 
region-peril – a high peril index does not necessarily 
lead to an extreme event in that year since these are 
random and depend on multiple features. The process 
for modelling extreme events given a certain peril index 
is then described in Section 3.1. 

The interconnected nature of the Earth’s climate 
system means that it is necessary to model not only 
the interactions of two perils with one climate driver, 
but also the interactions of a set of perils with two or 
more drivers, to represent the case where drivers have a 
modulating effect on each other as well as on the region-
peril under analysis. The result is a matrix of correlations 
illustrated in Section 3 for the full set of perils identified 
at the outset of the study, along with further expansion of 

Table 1: List of chosen region/perils

 Region Peril

 Australia Flood

 Australia Windstorm

 Australia Wildfire

 Brazil Flood

 China Flood

 Europe Flood

 Europe Windstorm

 Gulf of Mexico & Florida Tropical cyclone

 Indian Ocean Tropical cyclone

 Mexico Flood

 North East US & Canada (East Coast) Tropical cyclone

 North West Pacific Tropical cyclone

 South Africa Flood

 Thailand / Malaysia Flood

 US Flood

 US Tornadoes

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Appendix%20C
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the conclusions of the work in Section 4. Finally, future 
model development ideas are discussed in Section 5.

2.1 Region-peril definition

The following list of regions and perils were chosen for 
investigation based on key countries and territories of 
interest to Lloyd’s. 

2.2 Global climate drivers

Twenty two global climate drivers (see Table 2, below) 
were investigated as part of this process, and in order to 
further understand the complex interconnected systems 
that make up the global climate, descriptions of all the 

drivers considered have been included. This considers 
other factors such as Arctic sea ice, volcanic eruptions 
and planetary waves that also act as drivers in the global 
climate system.

It is important to keep in mind that these drivers 
operate over a range of temporal and spatial scales – 
every driver is a cog in a larger machine, and they turn 
at different speeds with varying levels of impact, some 
local, some global. Some drivers are thought to be non-
stationary – i.e. the timescale over which they operate 
varies (see Table 2 below), and that climatic change can 
introduce long period changes to driver variability. Both 
these factors introduce limitations to this work, which 
are discussed further in Section 3 (see p28). 

Table 2: Climate driver timescales

    Decadel Multidecadel 
Driver Months Year Years (<30 years) (≥30 years)

African Easterly Waves

Antarctic Oscillation/Southern Annular Mode (AAO/SAM)

Atlantic Meridional Mode (AMM)

Atlantic Multi-decadal Oscillation (AMO)

Arctic Oscillation (AO)

Arctic Sea Ice

Australian Blocking Index (BI)

Boreal Summer Intraseasonal Oscillation (BSISO)

East Atlantic Pattern(EAP)

El Niño-Southern Oscillation (ENSO)

Indian Ocean Dipole pattern (IOD)

Inter-decadal Pacific Oscillation (IPO)

Madden-Julian Oscillation (MJO)

North Atlantic Oscillation (NAO)

North Pacific Oscillation (NPO)

Pacific Decadal Oscillation (PDO)

Pacific North America pattern (PNA)

Quasi-Biennial Oscillation (QBO)

Rossby Waves (and other planetary waves)

Scandinavian Pattern (SCP)

Southern Oscillation Index (SOI)

Volcanic Eruptions
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2.2.1 Descriptions of climate drivers

Further source reference materials can be found in 
Appendix Section C. This will be of interest to anyone 
looking to gain a greater understanding of the drivers of 
weather-based perils in regions of interest.

2.2.1.1 African Easterly Waves 
African Easterly Waves form in the African Sahel, and 
are generated by disturbances in the African jet causing 
kinks in what would otherwise be a constant jet.7 The 
jet is created by the strong temperature difference 
between the Sahara Desert and the Gulf of Guinea. As 
air warmed over the Sahara rises and turns southward 
towards the cooler air over the Gulf, the rotation of the 
Earth turns the air current westwards and this stream 
continues to flow out over the Atlantic Ocean.8

African Easterly Waves propagate westward across 
the tropical and subtropical North Atlantic and can 
reach the Caribbean Sea and western North Atlantic, 
developing into thunderstorms that may then turn into 
hurricanes with moist air.9 They have a period of three 
to four days, a horizontal wavelength of 2,000-2,500km, 
and maximum amplitude in the lower troposphere. 
Approximately 60 African easterly waves form between 
May and October when conditions for the African jet 
are favourable10.

2.2.1.2 Antarctic Oscillation/Southern Annular 
Mode (AAO/SAM) 
The Antarctic Oscillation is the change in atmospheric 
pressure that occurs roughly every month between the 
Antarctic and southern-middle latitude that brings 
changes in wind and storm activity.11 It can be viewed 
as the south version of the Northern Annular Mode, 
and appears as two opposite pressure anomalies, one 
centred over the Antarctic and the other occurring 
between 40-50°s.12 It is these changes that cause the 
north-south movement of the westerly winds that circle 
the South Pole, with positive phases contracting the belt 
of winds towards Antarctica that results in a warming 
of the southern hemisphere mid-latitudes, with the 
negative phase pushing them further out.13

2.2.1.3 Atlantic Meridional Mode (AMM) 
The Atlantic Meridional Mode is the dominant source 
of linked ocean-atmosphere variability in the Atlantic 
that affects rainfall in northeast Brazil and tropical 
cyclone development in the North Atlantic14. It is 
characterised by variations in sea-surface temperatures 
and sea level pressure between the tropical Atlantic 
north and south of the Intertropical Convergence 
Zone15. It is this interaction in heat exchange between 
the ocean and atmosphere that drives change. It is 
also influenced by other drivers, particularly El Niño-
Southern Oscillation and North Atlantic Oscillation, 

and should be considered a distinct mode from Atlantic 
Multi-decadal Oscillation when looking at short time 
variations.16 

During a positive phase, sea surface temperatures 
become warmer than normal in the tropical North 
Atlantic and cooler in the tropical South Atlantic. The 
surface air pressure responds to the changes with lower 
pressure in the North and higher in the South17. These 
changes in pressure cause the Atlantic Intertropical 
Convergence Zone – where trade winds come together, 
triggering storm systems – to be pushed northwards, 
resulting in drought in northeast Brazil as this 
mixing zone shifts. Warmer than normal sea-surface 
temperatures during this cycle also tend to result in 
more tropical storms developing in the Atlantic. When 
the Atlantic Meridional Mode is in a negative phase 
the opposite occurs – greater rainfall in Brazil, and 
fewer tropical storms in the Atlantic18. 

2.2.1.4 Atlantic Multi-decadal Oscillation (AMO) 
The Atlantic Multi-decadal Oscillation is a global 
mode of natural variability typically reflected in global 
sea surface temperatures in the North Atlantic Ocean, 
with cool and warm phases that may last for 20-40 
years at a time19. It is thought that the changes are 
driven by fluctuations in the overturning circulation 
of the Atlantic Ocean, with changes in the sea-surface 
temperatures influencing air temperatures. These in 
turn give rise to changes in rainfall over much of the 
Northern Hemisphere, in particular, North America 
and Europe20. 

Atlantic Multi-decadal Oscillation has been associated 
with multi-decadal variations in Indian, East Asian and 
West African monsoons, the North African Sahel and 
northeast Brazil rainfall. Warm phases have seen an 
increase in the frequency and intensity of droughts in 
the US Midwest and Southwest, and more rainfall in 
the Pacific Northwest and Florida21. Tropical storms are 
also more likely to develop into strong hurricanes in the 
Atlantic during the warm phase. 

2.2.1.5 Arctic Oscillation (AO) 
Arctic Oscillation causes variability in the northern 
hemisphere through north-south shifts in zonal winds 
in association with north-south shifts in atmospheric 
pressure that fluctuate between negative and positive 
phases. It should be considered separately from North 
Atlantic Oscillation, as its influence extends across both 
ocean basins, whereas North Atlantic Oscillation is 
typically confined to the Atlantic basin22. 

The positive phase – low pressure over the Arctic, 
and high pressure over the central Atlantic – brings 
the opposite conditions with strong polar circulation 
pushing ocean storms farther north and bringing 

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Appendix%20C


Lloyd’s Emerging Risk Report – 2016

The risk of global weather connections 13

wetter weather to Alaska, Scotland and Scandinavia, 
and bringing drier, drought conditions to areas such as 
California, Spain and the Middle East.23 The negative 
phase brings higher-than-normal pressure over the 
Arctic and low in the mid-latitudes, which leads to 
weaker Westerlies that allow cold Arctic air to push 
into the Midwestern United States and Western 
Europe, bringing a cold winter to those areas, and 
storms to the Mediterranean. 

2.2.1.6 Arctic Sea Ice 
Sea ice forms and melts in sea water, and should be 
considered separately from land-based ice in the region 
when thinking about components of the climate system. 
It begins to form at around -1.8°C in small disc-like 
sheets that grow and merge together to form ice floes 
that can cover on average 25 million km2.24 As the ice 
forms, salt is expelled, forming saltier, denser water that 
sinks, driving a component of the global sea circulation 
system.

Surface coverage of sea ice in the Arctic can indicate 
changes in the global climate system, and reinforce 
those changes themselves as it has a role in a number 
of global processes, whether this is the diffusion of 
solar energy (white ice reflects more sunlight than sea 
water), atmosphere and ocean circulation (depending 
on whether there is more or less moisture available), or 
playing a part in heat exchange. The reduction in sea-ice 
cover in recent years has seen an increase in the heat 
flux from the ocean to atmosphere in autumn and early 
winter, which has increased air temperature, moisture 
and cloud cover in the region.25

2.2.1.7 Australian Blocking Index (BI) 
Blocking highs are strong high pressure systems 
that form further south than usual and remain near 
stationary for an extended period of time, essentially 
blocking the normal west to east progression of weather 
systems across southern Australia. They typically form 
across the Tasman Sea and Southwest Pacific26, and are 
identified by a blocking index created by the Australian 
Bureau of Meteorology.27, 28

Blocking highs are often associated with a cut-off low 
which may form to the north of the blocking high, the 
two systems interacting to create a blocking pattern. 
As frontal systems approach the blocking high, they 
slow down, weaken, and are pushed to the south of the 
block. Blocking highs can affect large areas, and have 
been known to cover all of southern Australia. They 
can occur at any time of year, last from several days 
to several weeks and, depending on their location and 
strength and how the block interacts with the systems 
around it, can produce hot spells, cold spells, dry 
conditions or wet conditions.29

2.2.1.8 Boreal Summer Intraseasonal Oscillation 
(BSISO) 
Boreal Summer Intraseasonal Oscillation is a large 
and slow-moving envelope of cloud systems and 
precipitation, and is one of the prominent modes of 
tropical intraseasonal variability from May-November30, 
with the related Madden-Julian Oscillation dominating 
from December until April31. During the boreal 
summer, the main centres of convective variability 
tend to move eastwards along the equator as a result of 
the Madden-Julian Oscillation phase, and then head 
northwards over the Indian Ocean and western Pacific 
areas as a result of surface heat fluxes32. This sequence 
drives the transportation of heat and momentum in its 
cloud systems across the region, forming a northwest-
southeast tilted rain band33. However, this isn’t always 
guaranteed; Boreal Summer Intraseasonal Oscillation 
is very complex, with changes in surrounding or 
influencing systems varying the strength, speed, and 
direction, which in turn affect summer monsoon onset 
and wet (active)/dry (break) phases.34, 35 These variations 
can bring unpredictable extreme36 impacts ranging from 
flood to drought as a result of variations in monsoon 
rainfall strength, and can alter the frequency of tropical 
cyclones and extra-tropical storms.37, 38 

2.2.1.9 East Atlantic Pattern (EAP) 
The East Atlantic Pattern is the second most dominant 
mode of sea-level pressure in the North Atlantic 
region, and takes the form of a low-pressure centre 
in the Northeast Atlantic and a high-pressure centre 
over North Africa/the Mediterranean Sea39. The East 
Atlantic Pattern subtropical link makes it distinct from 
North Atlantic Oscillation, although it is structurally 
similar, which is why it is often described as a 
southward shift in the North Atlantic Oscillation in 
existing literature.40 In the positive phase, the pressure 
gradient between the two pressure systems results in 
an intensification of the Westerlies over the central 
latitudes of the eastern North Atlantic and much of 
Europe. This pattern brings warmer air to Europe, with 
increased rainfall seen in Northern Europe as more 
storms hit the area and drier conditions across southern 
Europe due to the shift in winds41.

2.2.1.10 El Niño-Southern Oscillation (ENSO) 
El Niño-Southern Oscillation represents the cycle 
of fluctuation in sea-surface temperatures circulation 
that occurs across the equatorial Pacific Ocean, and 
dominates climate variability from year to year.42 This 
cycle switches from El Niño to La Niña on a timescale 
of a few years43, with neutral periods occurring where 
neither is dominant. The El Niño phase sees a warming 
of the ocean surface, or above-average sea-surface 
temperatures in the central and eastern tropical Pacific 
Ocean. The low-level surface winds, which normally 
blow from east to west along the equator, weaken, or in 
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strong El Niño years, reverse their direction and become 
westerly. In the La Niña phase the opposite occurs, with 
cooling of the ocean surface resulting in below-average 
sea-surface temperatures in the central and eastern 
tropical Pacific Ocean. The normal easterly winds along 
the equator also become stronger.44 El Niño events tend 
to only last for a single cycle from autumn to autumn, 
but it is not uncommon for multi-year La Niña events 
to occur as they did in the 1998-2001 period.45

The fluctuations in sea-surface temperatures are also 
coupled with changes in air-pressure systems – the 
Southern Oscillation part of the name. These changes 
affect the position and intensity of the jet streams, which 
change the tracks and intensity of storms. The negative 
phase of the Southern Oscillation occurs during El 
Niño, and sees abnormally high air pressure covering 
Indonesia and the western tropical Pacific, along with 
lower than normal pressure covering the eastern tropical 
Pacific. The positive phase, which occurs during La Niña, 
brings abnormally low pressure to Indonesia and the 
western tropical Pacific, and abnormally high pressure to 
the eastern tropical Pacific.46

2.2.1.11 Indian Ocean Dipole (IOD) 
Indian Ocean Dipole is a coupled ocean-atmosphere 
systema found in the Indian Ocean47 that is defined by 
the difference in sea-surface temperatures between a 
western pole in the Arabian Sea and an eastern pole 
in the eastern Indian Ocean, south of Indonesia48. The 
index of the Indian Ocean Dipole is known as the 
Dipole Mode Index49. The positive phase sees lower 
than average sea-surface temperatures and greater 
precipitation in the western Indian Ocean region, with 
corresponding cooling of sea-surface temperatures 
in the eastern Indian Ocean. This brings drought 
conditions across Indonesia and Australia, and sees 
increased rainfall in east Africa. The negative phase of 
the Indian Ocean Dipole brings opposite conditions, 
with warmer waters and greater precipitation in the 
eastern Indian Ocean, and cooler and drier conditions 
in the west.50 

2.2.1.12 Interdecadal Pacific Oscillation (IPO) 
The Interdecadal Pacific Oscillation51 is the natural 
fluctuation between warm and cold temperatures that 
alternates every few decades, and is a significant source 
of climate variability in the South West Pacific52. 
Interdecadal Pacific Oscillation covers the entire Pacific 
Basin, and occurs over 20-23 year time periods, which 
are determined by oceanic Rossby waveb propagation 
through the extratropics. The positive phase brings 
warm sea-surface temperature anomalies in the tropics 
and cold ones over the central and western extratropical 

Pacific, which brings a significant reduction in the 
number of tropical storms over the North Atlantic and 
an increase in the eastern North Pacific that is mainly 
driven by changes in wind shear53. The negative phase 
sees cold anomalies in the tropics and warm ones over 
the central and western extratropical Pacific54. 

Changes in the Interdecadal Pacific Oscillation phase 
cycle match up with global shifts in sea-surface 
temperatures, sea-level pressure, temperature and 
precipitation. It has been described as being an El 
Niño-Southern Oscillation -like mode that occurs 
over decadal timescales55. The two phases of the 
Inter-decadal Pacific Oscillation appear to modify 
the magnitude of year-to-year El Niño-Southern 
Oscillation precipitation and temperature variability, 
although a lack of consistent methods and the global 
scale data source mean that effects are not yet fully 
understood.56 

2.2.1.13 Madden-Julian Oscillation (MJO) 
The Madden-Julian Oscillation57, 58 is the major 
fluctuation in tropical weather on weekly to monthly 
timescales that takes the form of an eastward moving 
“pulse” of cloud and rainfall through the Indian 
and Pacific oceans where the sea surface is warm.59 
The pattern is formed through atmosphere-ocean 
interactions, with warm seas pushing air up through 
the atmosphere leading to condensation and rainfall. 
As the system moves eastwards, the warm air later 
cools and sinks but on meeting the warm seas tends 
to dry out, bringing sunny and dry conditions.60 The 
cycle takes place over 30-60 days before returning to 
the starting point much like a spinning wheel travelling 
along a path, and there can be multiple Madden-Julian 
Oscillation events within a season61. Depending on 
where the system is in its cycle in terms of enhancing 
or supressing rainfall,62 it can modulate the intensity of 
monsoons; tropical cyclone activity in the Indian, Pacific 
and Atlantic Oceans; and contribute to the speed of 
development of El Niño episodes.63

2.1.14 North Atlantic Oscillation (NAO) 
The North Atlantic Oscillation consists of a see-saw 
of surface pressure between two points – Iceland and 
the Azores – that can have large effects on the weather 
and climate patterns in the surrounding regions by 
changing the intensity and location of the North 
Atlantic jet stream64. It occurs all year round, however 
it is particularly dominant during the winter from 
December to March65. In the positive phase of North 
Atlantic Oscillation there is a stronger-than-normal 
low pressure system over Iceland, and a stronger-than-
normal high pressure system in the Azores, with a 

a  Linked changes of the sea-surface temperatures over the tropical waters and changes in pressure gradients, which in turn influence the air 
currents above.

b  Oceanic Rossby waves are large-scale waves within an ocean basin. They have low amplitude/height – centimetres to metres – compared 
to a long wavelength, which can be of the order of hundreds of kilometres. They may take months to cross an ocean basin.
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strong pressure gradient between the two regions66. 
This allows winds from the west to dominate that bring 
warm air across the Atlantic. This pattern brings mild, 
stormy and wet winter conditions in northern Europe 
and eastern US, and cold and dry winter conditions to 
northern Canada, Greenland and southern Europe.67 
The negative phase sees weaker pressures in both 
systems, resulting in an even weaker differentiation 
between the two that generates a blocking effect that 
adjusts the position of the jet stream. This allows winds 
that bring cold air from the east and north-east to 
dominate, bringing cold, dry winters to Europe and 
the eastern US, and mild and wet winters to northern 
Canada and the Mediterranean.68

2.2.1.15 North Pacific Oscillation (NPO) 
The North Pacific Oscillation is the Pacific sector 
equivalent to the North Atlantic Oscillation and 
is defined by fluctuations in sea level pressure 
characterised by high pressure over Hawaii and low 
pressure in the Gulf of Alaska69. It is connected with 
downstream weather conditions over North America 
and is a potential mechanism linking extratropical 
atmospheric variability to El Niño events in the 
tropical Pacific70. North Pacific Oscillation modes are 
often associated with large regional variations in air 
temperature and precipitation over North America, sea-
surface temperatures in the North Pacific and Bering 
Sea ice71.

2.2.1.16 Pacific Decadal Oscillation (PDO) 
The Pacific Decadal Oscillation is the dominant year-
round pattern of monthly North Pacific sea-surface 
temperature variability. It is a complex combination of 
different physical processes, made up of both remote 
tropical forcing and local North Pacific atmosphere/
ocean interactions operating over different timescales 
to drive similar Pacific Decadal Oscillation -like sea-
surface temperature anomaly patterns72. Shifts in the 
phase alter the upper level atmospheric winds and 
can have significant implications for global climate, 
affecting Pacific and Atlantic hurricane activity, 
droughts and flooding around the Pacific basin, 
productivity of marine ecosystems, and global land 
temperature patterns.73

2.2.1.17 Pacific North America (PNA) pattern 
The Pacific-North America pattern is described as a 
Rossby wave train of anomalies in the geopotential 
height field, with four alternating pressure zones that 
form an arc from the north eastern Pacific across to the 
south-eastern US74. It influences winter air temperature 
and precipitation over much of western North America, 
as well as Arctic sea ice in the Pacific sector, by affecting 
the strength and position of the jet stream that delivers 
weather to the region.75 The positive phase is associated 
with an enhanced East Asian jet stream and with an 

eastward shift in the jet exit region toward the western 
United States. The negative phase is associated with a 
westward retraction of that jet stream toward eastern 
Asia, blocking activity over the high latitudes of the 
North pacific, and a strong split-flow configuration 
over the central North Pacific.76 Although it is an 
independent mode of climate variability, it also responds 
to changes in sea surface temperatures, which is 
reflected by El Niño-Southern Oscillation, with phases 
matching up with the cycle – positive Pacific North 
America pattern/El Niño and negative Pacific North 
America pattern/La Niña.77

2.2.1.18 Quasi-biennial Oscillation (QBO) 
Quasi-biennial Oscillation is the cycle of wind direction 
in the stratosphere at heights of 20-40km that blows 
in a continuous circuit around the Earth.78 These winds 
may weaken and change direction, switching from east-
west and west-east roughly every 14 months.79 The cycle 
is driven by waves descending between the troposphere 
and stratosphere, breaking and transferring energy and 
momentum between the layers and enforcing wind 
direction. Westerlies tend to move down faster and 
easterlies tend to be stronger so the cycle varies between 
the two directions.80 Quasi-biennial Oscillation can 
affect the strength of other systems, such as the westerly 
phase enhancing positive phases of the North Atlantic 
Oscillation, increasing the strength of the jet stream 
and storms that form along the track,81 and affecting 
tropical storm development by modulating the cloud 
environment.82

2.2.1.19 Rossby Waves/Other Planetary Waves 
Rossby Waves occur at mid-latitudes, and normally 
take the form of waves hundreds of kilometres long 
that are continuous around the hemisphere and orbit 
both poles.83 Due to their large wavelengths, the 
patterns of flow can connect regions separated by great 
distances – they define the essence of teleconnections 
in their structure and effects.84 They form in large part 
due to the structure of the relatively thin atmosphere 
in relation to the size of the Earth, with energy and 
circulation patterns able to build up from side to side/
horizontally much more easily than up-down/vertical 
winds.85 Rossby Waves are characterised by cold troughs 
and warm ridges, and best develop between about 
700mb and 200mb; they can be almost-stationary or 
travel slowly depending on their thermal structure.86 
When they swing north, their massive size and 
momentum sucks warm air from the tropics into 
Europe, Russia, or the US, and when they swing south, 
they do the same thing with cold air from the Arctic.87

2.2.1.20 Scandinavia Pattern (SCP) 
The Scandinavia pattern is a difference in atmospheric 
pressure systems between Scandinavia and opposing 
centres over south-eastern Europe and Russia/
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Mongolia.88 The positive phase of the Scandinavia 
pattern sees high pressure – often as blocking systems 
– over Scandinavia that brings dry conditions, and low 
pressure in the southern systems, often bringing cooler 
temperatures across central Russia and Western Europe, 
as well as high levels of precipitation across central 
and southern Europe.89 Depending on the season, this 
may fall as increased rainfall in the summer or heavy 
snowfall in the winter. The negative phase sees the 
opposite occur, with high levels of precipitation across 
Scandinavia and dry conditions in Western Europe.90

2.2.1.21 Southern Oscillation Index (SOI) 
The Southern Oscillation is a pressure anomaly over the 
Indian and South Pacific Oceans, switching between 
cycles around every 2.33 years that can be used to 
give an indication of how an El Niño (negative phase) 
or La Niña (positive phase) event is developing, and 
how strong it might be,91 as it corresponds very well 
with changes in ocean temperatures across the eastern 
tropical Pacific.92 

2.2.1.22 Volcanoes 
Volcanic activity can affect the Earth’s climate 
systems through the ejection of ash and gases into the 
atmosphere during eruptions, forming clouds or plumes 
that block sunlight.93 Cooling is most often associated 
with volcanic eruptions, with ash and sulphur-rich 
aerosols causing the most significant effects through the 
creation of atmospheric haze.94 As material is thrown 
up into the upper layers, sulphur dioxide is converted 
to sulfuric acid as it combines with moisture, forming 
fine sulphate aerosols; it is these aerosols that increase 
the reflection of radiation from the sun back into space, 
leading to cooling of the surface.95 In the stratosphere, 
absorption of the direct solar energy and infrared 
radiation escaping from the surface and troposphere, 
results in stratospheric heating despite the reduction in 
solar heating from ozone. These effects may persist for 
1-3 years, after which growth and coagulation lead to 
sedimentation and recirculation of the aerosol into the 
troposphere.96

The geographical location of where eruptions take place 
can also have an impact, as eruptions along the tropics 
see greater atmospheric circulation and distribution of 
aerosols; evidence suggests that the Krakatau (1883) 
and Tambura (1815) eruptions, may have cooled the 
atmosphere by about 0.3°C and 0.4-0.7°C respectively.97

2.3 Identifying key climate drivers

For each region-peril-driver combination, a review 
of academic literature was undertaken to establish 
background information on the seasonality, geography 
and the general characteristics of the relationship 
between global drivers. 

From this analysis, nine key drivers were identified 
according to their timescale of influence. This involved 
challenging the evidence through a series of staged 
queries and expert scientific review of the findings, as 
summarised below: 

1  For the defined perils, the relevant climate drivers 
were identified from research studies to:

    •   Determine the nature of the relationship between 
the driver and the peril. Does the mode increase 
or decrease the risk of the peril? Can this be 
quantified?

    •   Determine the robustness of these relationships: 
What is the range of studies in which the 
relationship has been identified? Is the mechanism 
understood?

2  For the climate drivers relevant to the significant 
perils, the nature of the relationships between climate 
drivers were determined and the robustness of these 
relationships assessed:

    •   Does one driver being active make another driver 
more likely? Can this be quantified?

3  The dependencies between different perils and 
regions were analysed. Those perils that are most 
likely to exhibit a dependent relationship were 
determined from the matrices, i.e. those related to the 
same mode of variability or different modes with a 
significant dependency on each other. 

Given the requirement that connections between global 
extremes are characterised on an annual basis, to align 
with decision-making timescales in the reinsurance 
industry, drivers such as the Madden-Julian Oscillation 
and Boreal Summer Intraseasonal Oscillation that 
operate on weekly to monthly scales are considered 
unlikely to provide a significant source of peril-peril 
connectivity once their impacts are integrated over a 
year.98, 99, 100 Other drivers, namely the Pacific Decadal 
Oscillation, Inter-decadal Pacific Oscillation and 
Atlantic Multi-decadal Oscillation, operate over 
the course of decades or more and are similarly not 
expected to provide an appropriate source of temporal 
connectivity (see Table 2, p11).101, 102, 103

There are additional specific reasons for exclusion from 
the final list: 

•   The Atlantic Meridional Mode interacts with both 
the North Atlantic Oscillation and El Niño-Southern 
Oscillation104 such that its variability is likely captured 
by the latter two drivers 

•   The Southern Oscillation Index essentially provides 
a southern hemisphere-specific indexed measure of 
the phase of El Niño-Southern Oscillation105 and 
can be captured in the choice of El Niño-Southern 
Oscillation Index
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•   The Australian Blocking Index variability is likely to 
be captured by other southern hemisphere dominant 
drivers 

•   No significant correlations were found for the Quasi-
Biennial Oscillation

Connections between African Easterly Waves and 
Rossby Waves are typically discussed in the context of 
providing mechanisms to connect drivers with particular 
regions of the Earth, whilst Arctic sea ice and volcanic 
eruptions are not typically linked to specific regional 
perils. In the latter case, although causal relationships 
have been identified, data is usually insufficient to be 
statistically conclusive.106, 107, 108 The quantity of available 
literature relating drivers to the perils of interest also 
contributed to the decision to prioritise some drivers 
over others.

As a result of this analysis, the final list of considered 
drivers becomes: 

•   El Niño-Southern Oscillation/Southern 
Oscillation Index

•   Arctic Oscillation

•   Antarctic Oscillation/Southern Annular Mode

•   North Atlantic Oscillation

•   North Pacific Oscillation

•   Pacific North America pattern

•   East Atlantic Pattern

•   Scandinavian Pattern

•   Indian Ocean Dipole pattern

This facilitates the creation of a matrix of linkages 
(see Table 3, p22) describing the hazard dependency 
structure that can used to inform understanding of risk. 

2.4 Simulating key climate drivers

The first modelling component was to produce suitable 
simulations of each of the nine key drivers. A statistical 
model was developed that incorporated information 
on driver seasonality, including lagged and non-lagged 
connections, with statistical simulations of driver 
time series based on Autoregressive–moving-average 
(ARMA) models. Two-step exploratory analysis, 
looking first at plots of auto-correlation functions and 
then plots of cross-correlation functions, revealed that 
there was non-negligible autocorrelation in each driver, 
but also dependence of drivers on lagged values of 
other drivers. (See Appendix A for full details of how the 
mathematical model was constructed.) 

To account for driver interaction, the process by 
which the states of one driver may influence the state 
of another, a hierarchical model process was created, 
constructed in a cascading fashion (see Figure 2, 
p18). The North Atlantic Oscillation, East Atlantic 
Pattern, Scandinavian Pattern and Pacific North 
America pattern are by construction mathematically 
independent109 so these underpin driver modelling 
(although the study found there to be some dependency 
of the East Atlantic Pattern on past values of the other 
three). For the purpose of this model, North Atlantic 
Oscillation, Scandinavian Pattern and Pacific North 
America pattern have no dependence on any other 
drivers. For reasons of parsimony, auto-regressive time 
series models were first considered, leaving the use 
of the more complex autoregressive–moving-average 
models only if deemed necessary. For the initial 
three drivers, an AR(1) (Autoregressive) model was 
sufficient. The order of construction of subsequent 
drivers was principally based on the expected order of 
influence (after first accounting for the East Atlantic 
Pattern dependency) starting with El Niño-Southern 
Oscillation. By making drivers depend on the state 
of each other, the model attempts to retain a realistic 
representation of the co-varying nature of interaction 
between teleconnection phases without the need for a 
dynamic model.

The full statistical specification of the driver model is 
shown in Appendix A2 and the use of the process to 
determine the model for each driver is illustrated for 
the El Niño-Southern Oscillation (Box 1, p19). Two 
stages were carried out in each case to both establish 
the nature of autocorrelation, and to establish the nature 
of cross-correlation. These two steps were then repeated 
for the construction of each of the remaining drivers 
until all remaining models had been constructed. 
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Figure 2: Hierarchical structure of driver model 

Source: Lloyd’s.

An arrow from one driver to another indicates that the former influences the latter but not vice versa. North Atlantic Oscillation, 
Scandinavian Pattern and Pacific North America pattern are simulated as independent Auto Regressive (AR(1)) processes. The other drivers 
are all influenced by their own lagged values (AR processes) but also the values of the other drivers higher up the hierarchy. The base AR 
process is indicated under each driver (See Section 2.2.1 for the driver descriptions).
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Developing the El Niño-Southern Oscillation 
model as an example, the Met Office chose the 
Bivariate ENSO Timeseries (BEST) Index,110 
which incorporates both sea-surface temperatures, as 
measured by Nino 3.4, and the Southern Oscillation 
Index as the model index. An Autocorrelation 
Function plot of this time series (see Figure 3, left) 
shows there is a significant degree of autocorrelation 
of up to seven lags. However, testing sequentially 
higher-order AR models using a Ljung–Box 
test statisticc, 111, 112 showed that an AR(4) model 
sufficiently described the El Niño-Southern 
Oscillation time series, such that the residuals between 
the AR(4) model and the original El Niño-Southern 
Oscillation series are considered independent and 
identically distributed. Figure 4 (below) compares the 
test statistics of an AR(1) and AR(4) model for the 
El Niño Southern Oscillation index.

Box 1: Determine El Niño-Southern Oscillation model (example)

Source: Met Office.

The dashed blue line represents the level above which lags are 
considered significant. In this case, seven lags are significant.

Figure 3: Autocorrelation of ENSO time series

c  Ljung-Box test statistic tests whether a series of observations over time are random and independent.
d  The Z-test is a hypothesis test based on the Z-statistic, which follows the standard normal distribution under the null hypothesis.
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Figure 4: Comparison of test-statistics for an AR(1) (left) and AR(4) (right) model of the El Niño-
Southern Oscillation time series used in this study
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In this case the residual of the AR(1) model still contains a 
degree of auto-correlation. Investigating successively higher 
order AR models reveals that an AR(4) model is sufficiently 
parsimonious to simulate the mthodology’s El Niño-Southern 
Oscillation time series.

Finally, assessment of cross correlation function 
plots of the El Niño-Southern Oscillation index 
with each of the northern hemisphere drivers 
(North Atlantic Oscillation, Scandinavian Pattern, 
East Atlantic Pattern and Pacific North America 
Pattern) revealed there to be degrees of correlation 
with the Pacific North America pattern and North 
Atlantic Oscillation. Using Z-testsd, 113 to assess the 
significance of successively higher Pacific North 
America pattern and North Atlantic Oscillation 
lags, found lags of up to seven months to be 
significant.

The form of the final model is as follows, where  
refers to the El Niño-Southern Oscillation peril 
index at time t (see Appendix A1 for further details).
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An example of simulated time-series for each of the 
nine drivers is shown in Figure 5 (below). Note that the 
simulations of the synthetic time series are simulated 
on a monthly time scale, starting from an appropriate 
index value taken from the real driver index to facilitate 

driver interdependence. Whilst this encourages the 
development of synthetic driver time series with 
interdependence that mimics reality, this also implies 
that the choice of driver index will have an influence 
on driver interactions. 

Figure 5: Simulated time series for the nine key drivers for an arbitrary 35-year period 

Simulations are based on autoregressive–moving-average models and seek to respect driver interdependence.

The resulting correlation structure between the drivers 
is shown in Table 3 (see p22). Despite the imposed links 
between some drivers the resulting linear correlation 

is still small. Some drivers show material correlations 
between one another.
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2.5 Simulating region-peril indices 

With suitable driver simulations in place, the 
connections between each of the nine key drivers 
and the 16 peril regions were extracted from a 
further review of scientific literature. Table 3 (see p22) 
summarises the sign, strength and significance of these 
relationships, defined by a correlation coefficiente, 
between drivers and perils. The evidence was evaluated 
to identify common drivers and their relationships for 
each pair of perils (known as a peril-peril pair). 

The assessment of evidence, in the form of peer-
reviewed journal articles, can often result in conflicting 
views of the dynamic mechanism or correlation 
between drivers and perils, so it was necessary to 
assess both the level of agreement between journal 
articles and estimate a measure of correlation between 
a driver and peril. Details of driver-peril connections 
where there was no statistically significant result, or 
in cases where the strength of a paper’s argument was 
assessed to be insufficient or inapplicable to this study, 
were not included in the following analysis. Note that 
in the case of flooding, it was assumed that studies 
investigating extreme rainfall serve as a suitable proxy 
where literature specifically investigating flooding is 
not available.

Where multiple correlation coefficients were 
suggested, a mean of all values was taken by applying 
a Fisher z-transform. Where there was evidence of 
a correlation but a coefficient was not given, a best 
estimate was provided based on expert judgement and 
discussion with other peers in the field. All peril-driver 
correlations were derived from the best available data, 
but are limited by the robustness of the underlying 
studies. In most cases, this is directly related to data 
availability, but certain assumptions had to be made 
when linking large geographic areas with what are, for 
the most part, small and frequently convective scale 
meteorological processes. It is recognised that there is 
frequently substantial uncertainty associated with even 
the most robust correlation results but it was decided 
to omit these in recognition that it should be implicitly 
accepted that the atmosphere is a complex and chaotic 
system. Incorporating uncertainty measures at this stage 
would simply mask any meaningful later results and put 
too much emphasis on the limitations of past studies. 

Some drivers only influence a region-peril for certain 
months of the year i.e. their effect is seasonal in some 
cases. For example, the El Niño-Southern Oscillation 

index only influences Australian flood between 
September and December inclusive. A table describing 
the seasonality can be found in Appendix B (see p42).

With the underlying correlations identified, a second 
model component was required that could simulate the 
interactions of two perils with one shared driver, but 
also the more complex case of a set of perils with two or 
more shared drivers (see Figure 6, p23). In the latter case, 
each driver potentially modulates the other, in addition 
to modulating the peril. Not accounting for this driver-
driver interaction may result in the under-estimation 
of a peril-peril connection in the case where the drivers 
reinforce each other, or over-estimate where drivers 
are mutually diminished. Each peril and its associated 
driver(s) are assumed to follow a multivariate Normal 
distribution whose variance-covariance matrix contains 
the correlation coefficients of Table 3 (see p22). The size 
of the two-dimensional covariance matrix is determined 
by the number of drivers that influence each peril 
region. A peril time series can then be derived assuming 
it follows a multivariate Normal distribution. Once each 
synthetic peril time series is constructed, the evaluation 
of a peril-peril correlation is found by calculating the 
Pearson correlation coefficient between two peril time 
series.

To mitigate uncertainty arising from the short historical 
period of data (on which the driver time-series models 
are based), this process was repeated 10,000 times 
using a Monte Carlo simulation. By simulating various 
plausible realisations of the drivers, the methodology 
aims to propagate the uncertainty arising from only 
having a short historical data set to the estimates of 
the peril-peril correlations. Rather than providing a 
single correlation value for each peril-peril correlation, 
the methodology also provides a confidence interval 
expressing the uncertainty in only having a short 
historical data set of drivers.

The mean of the 10,000 correlation values are taken as 
the final correlation assessment. Correlation significance 
is assessed by identifying those means that are 
significantly different from zero at the 90% confidence 
level (i.e. where the 5th to 95th percentile range does 
not include zero) and the 68% confidence level. Figure 
7 (see p23) compares the modelling output in the form 
of kernel density estimates for two events. Full results 
from the peril-peril correlation simulations are shown in 
Section 3 (see p24).

e  A correlation coefficient is a quantification of the statistical association between two random variables. In this case, any reference to a 
correlation coefficient implies the use of a Pearson correlation coefficient that measures the strength of a linear relationship between 
two variables. This can be value between +1 and -1, where a value of 0 implies no connection between two variables and a value of +/- 1 
implies total positive/negative dependence. 
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Table 3: Summary of peril-driver interactions using correlation coefficients derived from peer-reviewed 
journal articles.

Source: Met Office

Where multiple correlation coefficients are suggested, a mean of all values is taken using a Fisher z-transform. Where there is evidence 
of a correlation, but a coefficient is not given, the study provides a best guess (grey numbers). The strength of the evidence supporting 
each coefficient is represented by cell shading. Strong evidence (dark grey shading) is where multiple papers corroborate similar findings 
with multiple statistically significant correlations between peril and driver. Additionally, the connection between the peril and meteorology 
is clear. Weak evidence (light grey shading) is defined: a) where the study found numerous papers with conflicting evidence of driver-peril 
correlations, typically defined where papers find correlations of opposite sign; b) or significant and insignificant correlations; c) or papers 
where no significant correlation is found, but where a dynamic connection between the driver and peril is postulated; d) or the connection 
between the peril and the underlying meteorology is unclear, even in the presence of an observed correlation. Note that the study does 
not show a correlation where there is either no significant correlation or where no evidence is found to support or connection. Correlation 
entries reflect best available data at the time of publication.
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Source: Lloyd’s.

The two perils are each influenced by multiple drivers. Specifically Gulf-Florida tropical cyclone by Pacific North America pattern, North 
Atlantic Oscillation and El Niño-Southern Oscillation and European flood by North Atlantic Oscillation, El Niño-Southern Oscillation and 
Dipole Mode Index. Note that the El Niño-Southern Oscillation index influences European Flood throughout the year, but influences  
Gulf-Florida Tropical Cyclone only from August to October inclusive. 

Figure 6: Illustration of the model for two perils (Gulf-Florida tropical cyclone and European flood)

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

Pantone 1795C  Pantone 1795U 0 94 100 0

Pantone 716C Pantone 144U 0 63 99 0

Pantone 610C Pantone 610U 8 0 74 2

Pantone 383C Pantone 397U 35 0 100 20

Pantone 637C Pantone 637U 64 0 15 0

Pantone 633C Pantone 314U 100 0 10 30

Pantone 675C Pantone 220U 9 100 5 20

Pantone 2613C Pantone 526U 74 100 2 12

PNA NAO

Gulf-Florida Tropical Cyclone EU FLOOD

ENSO DMI

Figure 7: Kernel density estimates showing the sampling uncertainty of the correlation estimates for 
two events

Source: Met Office.

Shaded areas represent the limits of the 90% and 68% confidence intervals. The position of the mean correlation values are shown by the 
white dashed line. Note that for each comparison, the tails of the distributions suggest that there is a small chance that on some occasions 
the peril-peril pairs may demonstrate opposite correlations to those reflected in their mean value.

Finally, to assess the robustness of these uncertainty 
estimates, the whole simulation process (including 
running Monte Carlo simulations for each peril-peril 
pair) undergoes 100 repetitions. Significant pairs are 

compared in each instance. The Met Office makes 
further comment of these results in the Model results 
described in the following section.
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3 Model results

A summary of results from the peril-peril correlation 
modelling are shown in Figure 8 (below). This matrix 
represents the mean correlations value obtained from 
the 10,000 Monte Carlo simulations. The spread of 
values obtained from the Monte Carlo analysis is used 
to assess if the mean value is significantly different to 
zero by examining the locations of the 5th and 95th 
percentiles. If this range does not overlap zero, the 

study concludes the means are significantly different to 
zero with 90% confidence. This process is repeated for 
a range of one standard deviation, providing a second 
assessment at 68% confidence. Out of 100 repetitions of 
the complete modelling process, the results significant 
at either 90% or 68% confidence are significant in at 
least 97 out of 100 replications. 

Figure 8: Matrix of correlations for the full set of perils
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A summary of those results that are significant at 90% 
are highlighted in Figure 9 (below). This shows the full 
spread of correlation values found during the Monte 

Carlo process, as well as the limits of the 90% and 68% 
confidence intervals.

Figure 9: Box plots of the nine significant peril-peril correlations with associated uncertainty bounds at the 
90% and 68% level

Source: Met Office

The lines extending from either side of the box represent the maximum and minimum simulated correlation values for each peril pair 
based on 10,000 Monte Carlo simulations.
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Significant results at both 90% and 68% are visualised in map form in Figure 10 (below). Here, the thickness of 
lines connecting two peril regions represents the strength of the correlation. Correlations significant at 68% are 
represented by dashed lines.

Figure 10: Map of key correlations between perils
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To Europe
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South Africa

To 
South Africa

To USA

To Brazil

Source: Met Office

Line thickness represents the strength of the peril correlations between perils significant at 90% confidence. Those peril correlations that 
are only significant at 68% confidence are represented by dashed lines only. Where no lines connected a peril region pair, no significant 
correlation was found.
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Most peril connections appear to be influenced by the 
state of El Niño-Southern Oscillation, which affects 
14 of the 16 peril regions. However, there is not always 
uniform agreement on the mechanism of this influence, 
particularly for US tornadoes, which remain relatively 
poorly understood, and China flooding, where the 
relationship between rainfall and surface run-off is 
unclear114 principally due to rapid urbanisation and 
other human activities that are changing land-use 
properties. European windstorms and Indian Ocean 
tropical cyclones are the only perils without clear 
evidence of El Niño-Southern Oscillation influence 
in current literature, although some authors suggest a 
link between tropical moisture transport and North 
Atlantic storm intensification,115 and recent research 
suggests that El Niño-Southern Oscillation may 
modulate the North Atlantic Oscillation116, 117 (although 
the stationarity of this connection is unclear118). This 
continues to be an area of active research. For Indian 
Ocean tropical cyclones, although there is a well 
understood El Niño-Southern Oscillation influence, 
El Niño-Southern Oscillation shifts the location of 
tropical cyclone initiation rather than induces a change 
in tropical cyclone frequency.119, 120, 121

Of those peril-peril combinations that are significant 
at 90%, connections with North West Pacific tropical 
cyclones are most numerous (five out of 15). The analysis 
suggests this is primarily due to its very strong (positive) 
correlation with El Niño-Southern Oscillation that links 
it to other El Niño-Southern Oscillation -modulated 
perils. Indeed, northwest Pacific tropical cyclones have 
the strongest peril-driver correlations of any peril in 
this study (with El Niño-Southern Oscillation r = 0.7 
and Pacific North American Pattern r = – 0.7). The 
Accumulated Cyclone Energyf tends to increase during 
strong El Niño events as more tropical cyclones form 
in the southeast western North Pacific122, 123, therefore 
allowing longer travelling time before encountering 
continental land or cooler mid-latitude water. For 
the Pacific North American Pattern, it is the strong 
steering flow of its negative phase that results in the 
strong negative correlation. The steering flow derives 
from anomalous cyclonic and anticyclonic circulations 
that intensify at low- and mid-latitudes from East Asia 
to the North Atlantic respectively, producing south-
easterly winds that move tropical cyclones towards 
Taiwan and mid-latitude coastal regions of Southeast 
Asia.124 Only the association between the Indian Ocean 
Dipole and flooding in Thailand and Malaysia is of 
equivalent magnitude. 

Of the weakest peril-driver correlations, US tornadoes 
are found to have the weakest link with large-scale 
drivers principally due to significant regional variation. 
Enhanced tornado activity has been shown to be 

associated with anomalously cool Pacific sea surface 
temperatures (synonymous with La Niña conditions) 
in the Gulf of Mexico.125, 126 Significant correlation of 
tornadoes from March to May with strong December 
to February El Niño-Southern Oscillation events 
provides a potential source of predictability. Spatially 
however, although El Niño conditions see tornadoes 
decrease in Central US, on the Gulf coast and Florida, 
El Niño sees a significant increase in tornadoes 
occurrence127. 

In the context of these findings, it is important to 
recognise some limitations of the methodology. This 
assessment is based on the current state of climate 
dynamics and does not account for possible future 
change in the Earth’s climate system. It is also assumed 
that any driver-driver interaction in either the form 
of driver-to-driver enhancement or diminishment is 
captured by the study’s tiered driver simulations. A 
fully dynamical assessment of these interactions could 
be addressed in future studies using numerical weather 
predication models (as discussed in the final study 
section on future developments). 

3.1 Simulating conditional extremes

The peril index in the year is calculated as a draw from 
a standard normal distribution (mean zero and variance 
1). The mean of this distribution, for a simulated year, 
is determined by an appropriate combination of the 
driver indices for each peril normalised so that the 
average peril index over a long time period is zero. This 
determines the “risk background”; a positive peril index 
indicates conditions more conducive for the peril to 
arise and negative less so. The variance of the normal 
distribution is determined so that, taking account of 
the additional variance introduced by the relevant 
driver indices, the overall variance of the peril index is 
one. Each index reflects the background risk for the 
given region-peril over time, which can rise and fall 
in practice for two reasons: (1) the behaviour of the 
relevant drivers and (2) random effects reflecting other 
features affecting the background risk. The random 
effects are chosen by sampling from the specified 
normal distribution and represent the limits of current 
scientific understanding (i.e. specific reasons for these 
random effects are not modelled but it is acknowledged 
that they are there). Since many peril indices are 
affected by common drivers this introduces dependency 
between the peril indices which this model captures.

As noted, the fact that a peril index is high does not 
automatically imply that an extreme event will occur. The 
specific details of how to model this residual extreme 
event uncertainty are arguable; the index could be used to 
specify a measure of centrality of the distribution (mean, 

f ACE Index: a metric that combines number, lifetimes and intensities of tropic cyclones.
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median or mode) or some other quantile. Therefore, 
there are a number of ways to generate pseudo insurance 
claims from the index (see Appendix A2 for an example), 
where the index value is assumed to equate to the loss at 
a given quantile of the loss distribution.  

In Lloyd’s experience, a reinsurance contract often 
suffers a full limit loss in a major event. This implies 
reduced sensitivity to major losses (i.e. once the contract 
has paid in full, it cannot pay any more, even if an event 
is larger). This is not the case for some direct or binder 
business where losses can continue to increase as events 
grow in size but for a business with a mix of direct 
and reinsurance it tends to imply that the sensitivity 
of the most extreme losses is lower than the more 
typical losses. As such, Lloyd’s has chosen to impose a 
constraint that, as the peril index grows, the deep tail of 
the loss distribution grows less quickly than the more 
frequent losses.

Lloyd’s has a catastrophe model that forms part of 
its internal model and that is based on its syndicates’ 
models (syndicates are groupings of members who come 
together to underwrite risks that operate in the Lloyd’s 
market). The syndicates’ use a variety of approaches to 
model catastrophes: some use proprietary catastrophe 
models; others have developed their own models. 
The Lloyd’s model amalgamates relevant parts of the 
syndicates’ models and as such Lloyd’s has already 
modelled views of natural catastrophe risks by peril 
(known as “marginal distributions”). These are currently 
combined by independently allocating the ranks of 
each marginal distribution to all simulations. In order 
to test the model presented in this study (referred to 
below as the “drivers-based model” to avoid confusion) 
in the context of Lloyd’s internal model, Lloyd’s first 
created the peril indices then sampled pseudo insurance 
losses from them in the manner described above. This 
created a multivariate distribution for each region-peril. 
These were then grouped where necessary to match the 
structure of Lloyd’s internal model. Finally, the ranks 
were extracted from the grouped drivers-based-model 
which captured how each of the region-perils relates to 
the other. The actual marginal distributions from Lloyd’s 

internal model were then matched so that the ranks are 
in 1-1 correspondence.

For example, suppose that a pseudo-claim relating to 
European Windstorm for a given simulation is ranked 
154 and within the grouped drivers-based model this 
relates to rank 2,435 from the North West Pacific 
Tropical Cyclone claims. Lloyd’s would then sort its 
marginal distributions and find the modelled loss 
ranked 154 in the European Windstorm distribution 
and join it together with the loss ranked 2,435 from 
the North West Pacific Tropical Cyclone distribution. 
This ensures the rank correlation structure from the 
drivers-based model is preserved in Lloyd’s internal 
model. Technically speaking, Lloyd’s then extracts 
the copula from the drivers-based model (estimated 
through simulation) and uses this to combine the 
marginal distributions (referred to as the “drivers-based 
copula”, below). This shows that the modelled 1 in 200 
(for example) based on an assumption of independence 
is statistically no different from the value derived using 
the drivers-based copula. 

Lloyd’s has carried out multiple sensitivity tests, 
particularly using different conditional event sampling 
distributions, and including where the peril index is 
in 1-1 correspondence with the arising losses as an 
extreme sensitivity. In all tested cases, Lloyd’s finds 
no discernible impact compared to an assumption of 
independence, outside of sampling error.

As noted previously, there is clearly some level of 
dependency between perils since the global atmosphere 
and ocean is a coupled dynamical system. But the 
findings of both the data-driven statistical study (see 
Box 2, page 30) and the drivers-based model, show that 
the impact of this on insurance capital modelling is 
negligible given the deep uncertainty surrounding the 
most extreme events. 

As such, Lloyd’s concludes that an assumption of 
independence for the risk groups that it assesses is 
currently appropriate for use in modelling its natural 
catastrophe risks.
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The methodology presented in this study is based on 
physical reasoning. The drivers are well studied and 
the dependency structure between them is inferred in 
previously published scientific papers. The relationship 
between the drivers and the specified region perils is 
also based on previously published work.

In addition to working with the Met Office, Lloyd’s 
also commissioned Ed Wheatcroft, a statistics 
consultant based at the Centre for the Analysis of 
Time Series at the London School of Economics, to 
carry out a statistical study based on observed data. 

The methodology used in this study focused on the 
waiting time – the period of time elapsed between 
consecutive observed events. It tested whether there 
is evidence that the occurrence of an event in one 
region peril affects the probability of a second, either 
in the same or in a different region peril. In the case 
of the former, this allowed the existence of clustering 
or anti-clustering to be tested, i.e. whether the 
occurrence of an event within one region peril made 
another in quick succession more or less likely. 

Based on observed events, the methodology defined 
samples from the distribution function of observed 
waiting times (D0) and compared these to how the 
distribution would look if consecutive events were 
independent of each other (D1). The Kolmogorov-
Smirnov testg was used to determine whether the 
probability of the second event is affected by the 
first. This formally measured the degree of difference 
between D0 and D1. Standard statistical inference 
methods were then used to assess whether the level 
of difference was “significant”.

The following tests were carried out - see 
the full details here: http://www.lloyds.com/
weatherconnections-C

1  Determine whether an event in one region peril 
makes the occurrence of another in the same 
region peril more or less likely

2  Determine whether an event in one region peril 
makes the occurrence of another in a different 
region peril more or less likely

3a  Determine whether a given event occurring in 
any of the region perils makes it more or less 
likely that another event will occur (this is a 
globally aggregated view)

3b  As for 3a but restricted to major events only

4  Consider whether correlation exists between 
annual count of different region perils

Key findings
•   Experiment 1: No evidence of clustering in US 

windstorm based on waiting times; some evidence 
for some of the other perils. Strong evidence of 
clustering within tornadoes.

•   Experiment 2: Some evidence for significant 
differences in the distribution of one region peril 
type conditional on a different region peril type in 
some locations; some of these support the findings 
of the Met Office study, others don’t.

•   Experiment 3: The evidence for significant 
dependency effects was low on a globally 
aggregated basis and largely disappeared when 
tornadoes were removed. There is considered 
to be little evidence for dependency once the 
focus shifted to the most extreme events. This 
strengthens the arguments in Section 3.1 that the 
peril index only relates to the background risk, and 
further uncertainty remains.

•   Experiment 4: Significant correlation between 
annual counts of region perils was found in 
some cases. This may be due to increases in the 
frequency of reported events over time due either 
to better observing systems or actual changes in 
the climate over time. Low confidence is ascribed 
to this result for this reason. 

•   Experiments 2, 3 and 4: Tornadoes appear so 
frequently they distorted the analysis and so the 
evidence has been assessed with and without their 
inclusion.

See the full details here on the findings listed above.  
http://www. lloyds.com/weatherconnections-Cs

Conclusions
The study concluded that the short history of 
observations available made it difficult to draw 
robust conclusions from the statistics alone. While it 
is almost certain that some low level of association 
exists between each of the region-perils, it remains 
appropriate to use an assumption of independence 
for modelling purposes. 

BOX 2: Is it possible to detect teleconnections from the modelling data alone?

g The Kolmogorov-Smirnov test is a non-parametric, distribution free test, that tries to determine if two datasets differ significantly. It 
makes no assumption about the distribution of data to do so.

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Perils
www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Perils
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4 Conclusions

Based on the correlation results, what conclusions 
does the study make about interconnectivity of global 
weather events?

Conclusion 1: For extreme weather events an 
assumption of independence is appropriate.

The results of running the methodology in this report 
through Lloyd’s internal model demonstrate that the 
assumption of independence between weather events in 
models used by the insurance industry remains appropriate. 

Lloyd’s has run the proposed model, both with and 
without the conditional event sampling. In the former 
case Lloyd’s found that the heavy tailed nature of its 
natural catastrophe models means that no observable 
correlation exists for extreme events and, as such, a 
modelling assumption of independence is appropriate.  

As regards the latter, event sampling was run as 
an extreme stress test and effectively assumes that 
there is a one-to-one correspondence between high 
peril index levels and the largest extreme events. In 
this case the study found that US hurricanes and 
European windstorms are negatively correlated, as are 
US hurricanes and Pacific typhoons, US hurricanes 
and the aggregate of perils in the rest of the world 
are slightly positively correlated. In aggregate, these 
cancel each other out. This demonstrates that although 
Lloyd’s believes conditional event sampling is the most 
appropriate model, it is not a critical step to take since 
even the extreme stress test in which it is omitted does 
not lead to material impacts on Lloyd’s overall modelled 
catastrophe risk levels.

Figure 11 (see p32) helps illustrate why an assumption 
of independence remains appropriate in the presence of 
correlated peril indices. The figure compares values of 
the Northwest Pacific Tropical Cyclone index with the 
values of the Australian Windstorm index in the same 
year – some 10,000 pairs of index values are shown in 
the plot. The correlation between these perils is negative 
(-0.29) and this can be seen by the tilt in the scatter 
plot to the left (if they were uncorrelated, the plot 
would be roughly circular). 

A least squares regression line is also shown and this 
is negatively sloped. The horizontal lines show the 
expected value of the Australian Windstorm index 
given that the Northwest Pacific index is larger than 
a certain value (the notation E(Y|X>1.64) means the 
expected value of the variable Y given that the X value 

is greater than 1.64). The peril indices are constructed 
so they each have variance 1 and mean zero. Taking the 
red horizontal line as example, that the data shows that 
the expected value of the Australian index is less than 
zero (-0.62) when the Northwest Pacific index is larger 
than 1.64 (which only occurs 5% of the time). 

So, consistent with the negative correlation, it is the 
case that the average Australian index value is lower 
than normal when the Pacific index is much higher 
than normal. Note that there is a wide degree of scatter 
in the Australian index, though. It is still quite possible 
for the Australian index to take positive values when 
the Pacific index exceeds 1.64, despite the negative 
correlation. This is also evidenced by the vertical lines 
which show the range in which the Australian index 
falls 90% of the time given the Pacific index exceeds the 
specified value. The data shows that the width of this 
range for the unconditional Australian index is 3.27h 
and this narrows only slightly to 3.10 when conditional 
on the Pacific index exceeding the 1.64 threshold. 

In summary, the methodology shows that the 
Australian index can be expected to fall within -0.62 
+/- 1.55 90% of the time when the Pacific index 
exceeds 1.64. Since the “error” term 1.55 is more than 
double the average term (-0.62) it is clear that the 
existence of negative correlation does not mean that 
both peril indices will always take opposite values. This 
effect occurs before the conditional event sampling step 
and illustrates the considerable randomness within the 
indices themselves.

h This is equivalent to conditioning on the Pacific index being greater than its smallest value (4).
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Conclusion 2: A number of regions show some 
correlation between weather events but these are not 
substantial enough to warrant a change in our capital.

While there is some level of dependency between perils, the 
findings of both the data-driven statistical study (see Section 
3.1, Box 2, p30) and the model, presented in the main 
body of this study, are that the impact of this on insurance 
capital modelling is negligible. Only nine of the 120 peril 
correlations analysed in this study showed any significant 
links, and the links can be both positive and negative. For 
example, the study confirmed that while the El Niño-
Southern Oscillation influences the majority (14 of 16) of 
regional weather perils, it also reduces the impact of 10 of 
the 14 perils for three months of the year.

When statisticians speak of a “significant result” this 
means the result is probably not down to chance; it 
does not mean the result is “important” or “material” as 
such labels must be determined by the context and the 
user. Based on the model presented in this study, the 
majority (105 of 120) of global peril-peril dependencies 
are not significantly different from zero. (See Figure 9,  
p25 for the full list.) 

Figure 9 shows the uncertainty bounds for the nine 
peril-peril correlations that are significant at 90% 
confidence. The global nature of these peril-peril 
correlations is indicated by the map on Figure 10 (see 
p26). Given the chosen confidence interval, there is a 
10% probability that these results arose by chance – 
with 120 region-peril combinations it would be normal 
to expect 12 apparently significant results. The 100 
repetitions of the modelling process allow the stress-
testing of the robustness of these results. Where Lloyd’s 
10,000 Monte Carlo simulations may not have fully 
captured the uncertainty of a given peril-peril pair, 
these pairs would be expected to fluctuate between 
showing significant and insignificant results. Out of 
100 repetitions, the number of times a significant result 
would be found would be less than 100. In this case, 
each of the significant results (see Figure 8, p24) is 
shown to remain significant in more than or equal to 
97 out of 100 repetitions. This suggests that the chance 
of a Type I error (the incorrect rejection of a true null 
hypothesis, sometimes termed a “false positive”) is less 
than 3%.

 

Figure 11: Illustration of significant scatter despite correlation between two indices
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Conclusion 3: Even when there are high correlation 
levels between weather events, it does not necessarily 
follow that there will be large insurance losses. 

For atmospheric hazards to cause major insurance losses, 
a rare major atmospheric event has to take place in 
combination with other circumstances conducive to such 
losses (e.g. a weather event affecting a major urban centre). 
Such circumstances are so rare that even when atmospheric 
conditions are conducive to a major weather event, 
catastrophic events do not always occur. Conversely, large 
losses sometimes occur in years when the correlation levels 
are not as high. For example, Hurricane Andrew (see case 
study, below), which caused one of the largest insurance 
losses of the 20th century, occurred in an El Niño year 
– a climatic feature that tends to reduce the likelihood of 
hurricane development.

The Corporation of Lloyd’s is ultimately interested in 
extreme events from a capital perspective and, as noted 
previously, there is still a high degree of randomness in 
their behaviour. For a hurricane to cause major damage 
it doesn’t just have to form, it has to survive until 
landfall, a process that often takes place over multiple 
days, and that requires wind shear to be low and 
pressure-steering patterns to guide storms towards land. 
It usually has to be of high severity and to hit a major 
urban centre to cause an extreme loss.

Hence it cannot be assumed that high peril index 
values mean there will be an extreme event in the 
year, nor that a low peril index means there will not 
be. Hurricane Andrew occurred in an El Niño year 
when the number of hurricanes generated in the North 
Atlantic, as previously noted, would tend to be lower 
(see, Box 3, below, for more details).

Lloyd’s has carried out multiple sensitivity tests, 
particularly using different conditional event sampling 
distributions, including where the peril index is in 
1-1 correspondence with the arising losses as an 
extreme sensitivity. In all tested cases, Lloyd’s found 
no discernible impact compared to an assumption of 
independence, outside of sampling error.

As noted, there is clearly some level of dependency 
between perils since the global atmosphere and ocean 
is a coupled dynamical system. But the findings of 
both the data-driven statistical study (see Box 2 on page 
30) and the driver-based model are that the impact of 
this on insurance capital modelling is expected to be 
negligible given the deep uncertainty surrounding the 
most extreme events. 

As such, Lloyd’s concludes that an assumption of 
independence for the risk groups that it assesses is 
currently appropriate for use in modelling its natural 
catastrophe risks.

BOX 3: High peril index values do not necessarily lead to extreme events

Hurricane Andrew

The study makes the point that the peril indices 
only indicate the background level of risk and that 
an extreme level of the index does not imply that 
an extreme insurance event will occur. Hurricane 
Andrew is a good illustration of this. Andrew made 
landfall as a Category 5 hurricane in August 1992 in 
Miami, Florida. Described by the Miami Herald as 
“the worst natural disaster ever to befall the United 
States”, it destroyed 63,000 homes and left up to 
250,000 people homeless.128 However, during this 
time there was a moderate strength El Niño,129 which 
often leads to lower not greater hurricane activity. 

Andrew made hurricane status on 22 August and it 
strengthened rapidly to Category 5 over 36 hours.130 

Despite being a small storm, Andrew’s landfall on 24 
August caused US$25bn economic damage, $15bn 
of which was insured131 ($27bn in today’s terms132), 
and according to the National Hurricane Center, 

directly led to 26 deaths and contributed to 39 
more.133

Yet the 1992 hurricane season as a whole was 
not very active, in line with the El Niño effect. 
One measure of season strength is known as the 
Accumulated Cyclone Energy (ACE) index. ACE 
is a measure of the energy in a hurricane over its 
lifetime and is defined as the sum of the squares of 
the wind speed at six hourly observations divided 
by 10,000 (to avoid the values being too large). The 
ACE index for an entire hurricane season is then 
calculated as the sum of the ACE values for all the 
storms in that season. The ACE index was below 
normal in 1992 at 76 compared to 2005 which had 
an ACE index of 250, the highest ever recorded.134 

Although remembered as a Florida hurricane, 
Andrew also entered the Gulf of Mexico causing 
$500m damage to oil platforms following its re-
intensification over the ocean135 making a second 
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US landfall in Louisiana as a Category 3 storm. This 
second landfall was fortunately in a location of low 
population density causing just $1bn of additional 
economic damage.136 Had its path been different, 
additional major destruction could have been 
caused. This is a key reason that insurance industry 
catastrophe models are not based solely on statistical 
studies of past events but also take account of the 
potential for losses never previously observed. Such 
models contain modelled hurricanes that cause losses 
far in excess of any past events. 

Official pressure and wind speed observations of 
Andrew were sparse and not ideally located – the 
nearest being at Miami airport some five miles from 
the eye wall (where the strongest winds occur). 
This led to an early example of crowdsourcing 
observations where individuals were asked to report 
any data they had. Many such observations were 
received that contributed to a greater understanding 
of the storm.137

Andrew had the third lowest central pressure at 
landfall (922mb) in the 20th century, only surpassed 
by the Labor Day storm in 1935 (892mb) and 
Camille in 1969 (909mb).138 Gusts of up to 150kt 
(172 mph) and sustained winds of 125kt (144 mph) 
are suspected to have occurred and a strong storm 
surge accompanied Andrew with peak high water 
marks as much as 16-23ft above sea level in some 
locations.139

Many changes to insurance processes and policies 
were introduced post Andrew, such as Hurricane 
Deductibles, greater use of reassurance, and the rise 
in the use of catastrophe modelling.140 All this from 
an event occurring in a year when the peril index 
was not at an extreme value.

European Windstorms

Whilst the example of Hurricane Andrew highlights 
that even a low peril index value cannot rule 
out severe events, there remain situations where 
an index is a robust indicator of severe natural 
hazards. During the northern hemisphere winters 
of 2013/14141 and 2015/16142, the North Atlantic 
Oscillation was strongly positive, with the monthly 
North Atlantic Oscillation Index mean values 

peaking at +3.54 for December 2013 and +4.22 for 
December 2015.143 From the analysis of peril-driver 
interactions, the correlation coefficient between 
North Atlantic Oscillation and European flood 
was 0.5, suggesting a tendency towards flooding 
in Europe in periods of positive North Atlantic 
Oscillation. 

In these two examples, the peril index relationship 
is indicative of the potential for extreme rainfall 
(with associated flooding risk) within the European 
region. However, it is still a big leap from there 
to predict the location and severity of the event, 
which may only result in damaging flooding due 
to pre-existing conditions (e.g. already saturated 
soil) or persistent heavy rainfall in a specific locality 
(e.g. the Cumbria flooding in the UK in December 
2015). Yet, here too, the converse is also true in some 
extreme scenarios. For example, the value for the 
North Atlantic Oscillation Index in December 2010 
is +4.62, a month characterised by complete absence 
of storm and flood risk due to settled and extreme 
cold conditions.

Risk assessment challenges

These real world examples demonstrate that in 
chaotic systems there is an inherent uncertainty 
that cannot be fully captured in modelling processes 
when there is imperfect knowledge of the Earth 
system. The sensitivity of hurricanes or extra-tropical 
cyclones to small changes in “initial conditions” – 
those processes that initiate or inhibit their growth 
and formation – imparts baseline unpredictability 
when their prediction is based on a metric that does 
not perfectly describe their variability. 

Modes of climate variability such as El Niño-
Southern Oscillation are designed to capture 
large-scale mean variation in the Earth’s coupled 
atmosphere-ocean system. In each case, they are 
found to drive a significant part of the mean 
variability of individual systems such as hurricanes 
or extra-tropical cyclones, but because there is a limit 
to their predictive capability, in practice this means 
assessment of climate variability has a random 
element when climate drivers are used for predictive 
purposes. Chaos does not imply randomness, but 
chaos combined with imperfect knowledge results in 
limits to the extent of Earth system predictability144. 
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Conclusion 4: Weather events can still occur 
simultaneously even if there is no link between them.

Extreme weather events can still take place at the same time 
even though this study confirms for us that weather events 
can be modelled as independent. Indeed, Lloyd’s internal 
model generates scenarios that show multiple massive 
catastrophes occurring in the same year, despite underlying 
assumptions of independence. 

The findings of this study do not preclude extreme 
events from happening together, and a statistical 
assumption of independence does not contradict this. 
Such multiple events would not falsify the findings of 
this study unless they started to happen on a regular 
basis. Lloyd’s own internal model, based on weather 
event independence, contains multiple extreme events 
that occur simultaneously. The internal model is used 
for many purposes including the calculation of statutory 
capital requirements. When multiple events do occur 
together (such as in 2011) this can be evidence they are 
not independent. However, it does not prove it. 

Lloyd’s internal model, based on an assumption of 
independence, contains many simulations in which 
multiple massive catastrophes occur in the same 
year – far in excess of what has been experienced in 
practice. These arise despite Lloyd’s assumption of 
independence. In fact, to statistically prove two risks 
are not independent requires a sufficient number of 
instances of events occurring in close proximity. As 
extreme events are rare, it takes a long time to gather 
such information, which is why Lloyd’s adopted the 
approach described in this study, to combine statistical 
information with a modelling approach grounded on 
a foundation of literature that outlines the greatest 
scientific understanding of the Earth’s atmospheric and 
oceanic system.

Overall conclusion

The results of the modelling presented in this study 
demonstrate that an assumption of region-peril 
independence is currently appropriate for use in 
modelling extreme natural catastrophe risks (noting the 
limitations of the methodology as earlier described).

This important finding supports the broader argument 
that the global reinsurance industry’s practice of pooling 
risks in multiple regions is capital efficient and that 
modelling appropriate region perils as independent is 
reasonable. 

This challenges the increasingly held view among 
some regulators around the world that capital for local 
risks should be held in their own jurisdictions. Lloyd’s 
believes this approach reduces the capital efficiency of 
the (re)insurance market by ignoring the diversification 
benefits provided by writing different risks in different 
locations and, in so doing, needlessly increases costs, to 
the ultimate detriment of policyholders. Insisting on the 
fragmentation of capital is not in the best interests of 
policyholders.

Note on the methodology 

While this report finds that an assumption of 
independence is appropriate when modelling weather-
related insurance losses, it is important to recognise 
the limitations of the methodology presented, which is 
based on the current state of climate dynamics and does 
not account for possible future change in the Earth’s 
climate system. It is also based on assumptions that any 
interaction between weather events is captured by the 
methodology’s driver simulations. 
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5 Next steps

Modellers can use external data creatively and 
innovatively to complement the insurance market’s 
specialist data, and both Lloyd’s and the Met Office 
hope that by making the model available to the public 
for general review (see Appendix A for full details of 
the methodology) this will serve as a starting point 
for further work. Lloyd’s welcomes dialogue and 
development from any and all sectors to add to and 
improve the methodology. The model described here 
attempts to capture all the material interactions between 
all region perils and drivers. It is important to note that 
simulated data from these models is dependent upon 
the reliability of the data used to calculate key model 
parameters, bearing in mind that difference sources of 
information have been used to construct different drivers.

To provide a more dynamically robust model, a more 
complete modelling system must be considered. In this 
study, Lloyd’s and the Met Office essentially create a 
climate generator based on the statistical modelling 
on nine key drivers. From these perils were simulated 
by way of a variance-covariance matrix containing 
correlation coefficients derived from the literature. This 
created a computationally inexpensive method to assess 
dependence, but clearly depends on the accuracy of the 
modelling of the key drivers. Although the interactions 
between drivers are implicitly accounted for by 
simulating each in a sequential fashion (see Sections 2.4 
and Appendix Section A2 for further details) the accuracy 
is limited by the robustness of the statistical modelling 
methods, and implicitly by the quality of the source 
data. More dynamically robust results could be achieved 
using a fully coupled (i.e. atmosphere and ocean) global 
climate model, such as those used in numerical weather 
prediction or for global climate predictions. Once 
initialised with appropriate boundary conditions, these 
models should be dynamically self-consistent. However, 
numerical models introduce a new set of challenges. 

Once suitable initial conditions have been chosen, the 
model must be run until it reaches a state of statistical 
equilibrium (i.e. the point at which the model ”forgets” 
its initial conditions) which typically occurs on the 
order of thousands to tens-of-thousands of model 

years, a process known as model “spin-up”. Without 
sufficient spin-up the model is still largely dependent 
on the choice of initial conditions. In cases where 
a model’s initial parameters reside more distantly 
in its past, the effect these have on the state of its 
present-day performance decrease. Additionally, as 
previously discussed, climate forcings are generally 
not time-invariant (i.e. some global drivers are likely 
to be non-stationary) and a single long simulation 
will not be statistically robust.145, 146 To account for 
this, an ensemble of model runs should be used, each 
of which must be sufficiently spun-up so as to ensure 
they are independent of each other. Each of these 
aspects requires substantial computing power (which 
is why climate models are frequently run on some of 
the largest supercomputers in the world), and this is 
before considering suitable model resolutions capable 
of capturing the small-scale processes necessary to 
replicate the driver dynamics.

Estimates of the computational resource requirement 
and associated costs vary significantly depending on an 
assessment of the appropriate time period for robust 
results, the model resolution and the model physics 
required to represent drivers of interest to suitable 
accuracy, and the computer architecture used. Lloyd’s 
concludes that, currently, it would not be cost-effective 
to carry out a full Global Circulation Model (GCM) 
based analysis, particularly given the overall conclusion 
that an assumption of independence is valid for 
modelling purposes.

Lloyd’s believes that additional modelling efforts would 
be best directed to further studies that focus on topics 
such as exploring the nature of extreme events within 
the perils themselves. GCMs and other models could 
be useful to explore the tails of the natural perils of 
interest – by producing synthetic events that have 
not been observed before. If this approach is explored 
further it will be critical to assess whether the perils are 
resolved in the model to a sufficient granularity in order 
to draw meaningful conclusions.
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Appendix A: Source data & mathematical descriptions

A1. Source data 

Data from the following sources are used as the basis for fitting time series models. All links are valid at time 
of publication.

Northern Hemisphere Drivers: Includes time series for the North Atlantic Oscillation (NAO), East Atlantic Pattern 
(EAP), Scandinavian Pattern (SCP) and the Pacific North American Pattern (PNA). These are identified via 
Rotated Principal Component Analysis,147 which results in each index being independent of the other. These indices 
form the basis of generating the other 5 drivers.  
Data available: http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml 

El Niño Southern Oscillation based on the BEST ENSO index148 that incorporates both sea-surface temperatures as 
measured by Nino 3.4 and the Southern Oscillation Index (the pressure difference between Tahiti and Darwin). This 
provides an index that more explicitly includes atmospheric processes. 
Data available: http://www.esrl.noaa.gov/psd/people/cathy.smith/best 

Arctic Oscillation (AO) based on the first leading mode from EOF analysis of geopotential height anomalies at 
1000 hPa149. 
Data available: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml 

Antarctic Oscillation (AAO), also known as the Southern Annular Mode (SAM), based on the index derived from 
EOF analysis of 500 hPa geopotential height anomalies150, 151. 
Data available: http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml 

North Pacific Oscillation (NPO), also known as the East Pacific – North Pacific (EP- NP) pattern. 
Data available: http://www.cpc.ncep.noaa.gov/data/teledoc/ep.shtml 

Dipole Mode Index (DMI), the metric of the Indian Ocean Dipole152. 
Data available: http://www.jamstec.go.jp/frsgc/research/d1/iod/iod/dipole_mode_index.html 

A2. Mathematical descriptions

Driver simulations 
As summarised in Section 2.3, for the nine drivers a statistical model is constructed to simulate plausible realisations. 
The joint distribution (model) of the nine drivers was built conditionally using the property that:

where A, B and C are random variables. Instead of thinking about a nine-dimensional joint distribution of the 
drivers, the methodology considers nine one-dimensional conditional ones. NAO, EA, SCP and PNA are by 
construction independent so the study starts by modelling those. To handle autocorrelation, ARMA time-series 
models were assumed. For reasons of parsimony, auto-regressive (AR) time series models were first considered, 
leaving the use of the more complex ARMA models only if deemed necessary. For each of NAO, SCP and PNA, an 
AR(1) model was sufficient:

where  is a white noise time series,  is the driver time-series,  is a model constant and  
are model coefficients.

CCF plots indicated that EA depended upon lagged values of the other three so an AR(1) regression model was 
assumed:
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Next, ENSO was modelled as an AR(4), conditional on NAO, EA, SCP and PNA as well as lags of NAO and PNA 
(as implied by CCF plots):

AO was modelled as an AR(1) model conditional on NAO, EA, SCP, PNA and ENSO. On the basis of CCF plots, 
1 month lag of NAO and PNA are also included:

AAO is represented as an AR(1) model, conditional on NAO, EA, SCP, PNA, ENSO and AO. On the basis of 
CCF plots, 7 month lag of NAO, 10 month lag of EA and 1 month lag of ENSO also included:

NPO is represented as an AR(1) model, conditional on NAO, EA, SCP, PNA, ENSO, AO and AAO. On the basis 
of CCF plots, 1 month lag of EA and 4 month lag ENSO are also included:

DMI is represented as an AR(1) model, conditional on NAO, EA, SCP, PNA, ENSO, AO, AAO and NPO. On the 
basis of CCF plots, 1 month lag of EA and 3 month lag NAO and 2 month lag ENSO are also included:

Peril simulations 
For simulating perils, information describing their dependence on the various drivers are correlation coefficients 
(as described in Section 2.2). To utilise this information, each peril and its associated drivers are assumed to follow a 
multivariate Normal distribution N( ) whose variance-covariance matrix contains correlations coefficients, derived 
from literature (see Section 2.2) in the off-diagonals.

As an example, Australian wind depends upon ENSO and AAO with correlation -0.4 and 0.3 respectively. 
Assuming the peril has zero mean and unit variance, then:

where  and  are estimated based on simulations of perils from the models above, and the covariance 
matrix becomes:
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where  indicates a correlation coefficient and  indicates region-peril variance. Note that  is symmetric.

The driver-driver  and  are estimated from simulated perils. Properties of the multivariant Normal then imply 
that the peril conditional on the drivers taking value x is Normally distributed as  where:

where  is the conditional mean and  is the conditional variance, and:

where  has dimensions (1 x n) and  has dimensions (n x n) and n is the number of influencing drivers. 

The assumption that the perils have zero mean and unit variance has no effect on the resulting peril-peril correlations 
and in fact any choice will do.

The drivers are simulated on a monthly time scale, starting from January 1980, based on lagged values in 1979 such 
that each driver simulation starts conditional on information in 1979 (for the lagged terms in the AR models). 
Conditional on these driver simulations, perils are simulated after aggregating the drivers at the appropriate time 
scale. New drivers are simulated for each Monte-Carlo simulation.

Conditional event sampling 

The following example shows how conditional event sampling can be carried out when the peril index is deemed to 
represent a specified quantile of the insurance loss distribution.

Let  denote the index value in a given year for a specified region-peril. Let P be the chosen percentile that the peril 
index is deemed to represent. 

Translate index for chosen percentile to ensure never negative – align with a chosen quantile

To represent the reduced sensitivity to major losses described in section 3.1 let R be the median relationship between 
the 1 in 200 insurance claims and specified quantile P (for example, when the translated index is at its median level 
the 1 in 200 claim might be 6 times larger than the 1 in 10 claim (say) – in this example R=6 and P=0.9). Let f be a 
function relating the relationship between the 1 in 200 value for other levels of the index; when the index is higher 
than median this will be less than 1 and when the index is lower it will be greater than 1.

The 1 in 200 pseudo claim for chosen region-peril, denoted , is then calculated as:
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Let  denote the cumulative density function of the standard normal distribution. Define  the 
quantile of the standard normal distribution with percentile P. In particular .

Let  represent a “pseudo insurance claim” in give year conditional on peril index value . Assume that this has a 
lognormal distribution.

Where,

 and 

Then  is sampled from a lognormal distribution with quantile  as required and  as defined. 
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Appendix B: Peril-driver seasonality

Table 5 summarises this seasonality of peril-driver correlations. Months in red indicate the periods where the 
monthly driver signal exhibits correlation with the associated peril. In most cases, the driver interacts with the peril 
concurrently (i.e. the correlation only exists during the seasons in which the peril occurs), but in some cases there is 
a lagged connection, indicated by the ~ symbol in the table belowh. In a minority of cases, the connection is more 
complex with both lagged and non-lagged connections. These cases are not highlighted in this table but further 
details can be found in the reference literature in Appendix section C.

Examples:

JFMAMJJASOND = Correlation between DJF (Dec to Feb) driver signal and DJF peril

JFMAM~~ASOND = Correlation between MAM (Mar to May) driver and ASO (Aug to Oct) peril

h  E.g. The ~ symbol in the China-flood/AAO/SAM box represents a lagged connection between April and May AAO and July and August flooding.

www.lloyds.com/~/media/Files/News%20and%20Insight/Risk%20Insight/2016/MET/Appendix%20C
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Table 4 – Peril-driver seasonality
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